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Abstract

In this paper we compare G(p), the Mellin transform (together with its analytic

continuation), and G(p), the related Hadamard finite-part integral of a function g(z),
which decays exponentially at infinity and has specified singular behavior at the origin.
Except when p is a nonpositive integer, these coincide. When p is a large negative

integer, G(p) is well defined, but G(p) has a pole. We show that the terms in the Laurent
expansion about this pole can be simply expressed in terms of the Hadamard finite-part
integral of a related function. This circumstance is exploited to provide a conceptually
uniform proof of the various generalizations of the Euler-Maclaurin expansion for the
quadrature error functional.

1 The One-Dimensional Euler-Maclaurin Expansion

The prototype problem in numerical quadrature is that of approximating an integral
If= /01 fl2)de (1.1)
by a sum of function values of the form
Qf = Zy: w; f(wi)
=1

and finding expressions for the approximation error. An early expression of this type is
the Euler-Maclaurin expansion, which appeared first in the early eighteenth century. In its
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modern form this is an asymptotic expansion of the discretization error associated with the

p-panel offset trapezoidal rule
U LBk
2/ (50)

'“ko

The standard form of the Euler-Maclaurin asymptotic expansion, valid when f(z) is regular,
is

§.000) - 1= 32 LO0CE e Zf Len8, (1.2)
n=0

where ((s, 3) denotes the generalized zeta function, deﬁned in (4.4) below. (When g =1,
this reduces to the more familiar Riemann zeta function ((s). When s is a positive integer,

((=s,8) = =Bi1s(0)/(1 + 5), (1.3)

where B, (z) is the Bernoulli polynomial of degree n.)

When f(z) is c®o, 1], (1.2) may be expressed as a finite sum of p terms, and the
remainder term, of order O(u~?7!), has a simple integral representation.

An important extension of this expansion was discovered by Navot (1961). This ap-
plied to a situation in which f(z) has an integrable algebraic singularity at an end of the
integration interval. When

flx) = 2%g(z), (1.4)
where a > —1 and g¢(z) is C®)[0, 1], the expansion (1.2) has to be modified by replacing

the first sum by
Z g(n)(o) ((=n —a,B)
— nl Iun—l—oz—l—l

Navot’s proof is lengthy. During subsequent years, shorter proofs have appeared from time

to time. Straightforward corollaries of Navot’s result provide asymptotic expansions for
integrand functions having algebraic-logarithmic singularities at one end and for integrand
functions having this sort of singularity at both ends of the integration interval.

A second important extension was discovered by Ninham (1966). Ninham showed that
Navot’s expansion is valid as written for functions defined by (1.4) when « takes any value
other than a negative integer. For o« < —1, the integral I f must be defined as a Hadamard
finite-part integral. See Lemma 2.3 below. Ninham’s proof is long.

Completing this set of results is the expansion when « is a negative integer (Lyness
1994). This resembles Navot’s expansion in form; however, the coefficients are different,
and an additional term in log g has to be included.

The present paper is devoted to a general proof of the one-dimensional Euler-Maclaurin
expansion. This proof, based on the Mellin transform, embraces all of the cited variants
in a single proof. It is based on a recently discovered approach due to Verlinden (1993).
(See also Verlinden and Haegemans 1993.) In this paper, that approach is extended to
hypersingular integrals.

In Sections 2 and 3 we collect results about Hadamard finite-part integrals and Mellin
transforms, which we denote by

i(p) - ]%O;(x)xp_ldx and G/(p) = /()Oog(ac)xp_l’



respectively. We treat functions g¢(z) that decay at infinity faster than any power of z.

Except at the poles of the Mellin transform, both G/(p) and G(p) are analytic and coincide.
Section 3 includes a treatment in the p-plane of the singularities of the Mellin transform. We
show that the coefficients in the Laurent expansion of GG(p) about a pole may be expressed
as the Hadamard finite-part integral of a related function. In Sections 4 and 5 these results
are applied in a straightforward manner to obtain various versions of the Euler- Maclaurin
asymptotic expansion.

A refreshing feature of this theory is that it treats all cases in a fundamentally uniform
way. The different expansions arise simply because the residues at poles in the complex
p-plane of the Mellin transform F(p) of f(z) = 2%g(x) are of a marginally different form
when « is a negative integer than otherwise; and the log p term arises for negative integer «
since a pole of F'(p) then coincides with a pole of the zeta function. The differences between
these various expansions arise in this theory simply as a result of a technical difference in
the formula required to calculate a set of residues.

Interesting but unrelated work on the evaluation of Hadamard finite-part integrals has
recently appeared (Elliott and Venturino 1998).

2 The Hadamard Finite Part Integral

In this section we recall some of the standard Hadamard theory of the finite-part integral
for the finite interval (Hadamard 1952) and apply it to semifinite integrals for a class of
rapidly decaying functions.

We shall be interested, almost exclusively, in integrands having moderate continuity
over a semi finite interval, say, (0,00). At the lower end, the worst singularity is algebraic-
logarithmic, that is, * logk x, while at the upper limit, the integration properties are benign.
(See Definition 2.4.)

For our purposes, the following definition is adequate.

Definition 2.1 Let f(z) be integrable over (e,b) for any € satisfying 0 < € < b < oo.
Suppose there exists a strictly monotonic increasing sequence cg < oy < ag < ... and a
nonnegative integer J such that the expansion

b oo J ]
/ flz)de = Z Z L; ;(b)e* log’ ¢
€ 1=0 7=0

converges for all € € (0,h) for some h > 0. Then the corresponding Hadamard finite-part
integral may be defined as follows:

b
%f(x)dw = Iro(b) when ay =0
0
= 0 when a; # 0 for all 1.

Some of the simpler special cases of this definition are listed in Lemmas 2.2, 2.3, and 2.5.
For much of the work in this paper, these lemmas together form an adequate definition.



Lemma 2.2 For b > 0,

%bxadw ] logb when o = —1;
0 T 0T/ (a4 1) otherwise.

This may be extended to sufficiently regular functions as follows:

Lemma 2.3 Let o < —1 and m > —a — 2 and g(z) € C"FD[0,b). Then for b > 0
b b m
]L»g(x)xadx =: / % |g(z) — Zg(k)(O)xk/k! dx
0 0 o

gk ) b
-I-Zg k'( )]Laxa"'kdx. (2.1)

k=0

The first integral on the right-hand side is a standard integral. The rest of this expression
involves Lemma 2.2 in order to define the finite-part integrals. Clearly, except when « is a
negative integer, the function defined in (2.1) is analytic in a.

We shall be interested in a class of functions g(z) whose decay rate at infinity exceeds
that of any inverse power of x.

Definition 2.4 An “allowable” function g(x) of class CU"FV[0,00) is one for which

/ g(k)(x)xp_ldx < 00, E=0,1,...,m+1,
0

for all p > 1.

Lemma 2.5 When g is an allowable function in C"FD[0,00) and f(z) = 2%g(z),

o0 b o0

]éf(ac)dx :]éf(x)dx—l—/ f(a)dz.

0 0 b

Notice that this definition is independent of b > 0. Moreover, we have
F x%dx =0, Va < —1. (2.2)
0

Theorem 2.6 follows immediately from Lemmas 2.2 and 2.3.

Theorem 2.6 When g(x) is an allowable function in C"+D[0,00), m > 0, the function

Qll

o0

() := ]é g(x)2* dz (2.3)
0

is analytic in « for Re o > —m, excepl al nonpositive integer values of o.

In fact, with the important exception of these integer values of «, 5(04) is the analytic
continuation of

/ g(z)z*"de, Re o > 0,
0
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and coincides with the Mellin transform G'(«) defined in (3.1) below.
Our first nontrivial theorem will concern integration by parts. When g(z) is C(™+1(0, b)

and m > 0, we have
b by
e amtl mb™  me™  m Jo a™

In the limit as € tends to zero, in general neither integral exists. However, we can provide
an expansion of the type needed in Definition 2.1 if we note that

g(é) _ % (g(O)€_m+gl(0)€_m+1 +.F g(m)(o) + g(m+1)(0)6_|_ ) ) (2‘5)

mem m! (m 4 1)!

We apply that definition to the integral obtained from amalgamating the two integrals in
(2.4). Then, in view of theexpansion (2.5), we have
7gbg(I) g — 90
0

(m)
e 90 g0

gmtl mbm m.m! mJo z

(2.6)

It is interesting to note that for the marginally more complicated situation in which log® z
also occurs in the integrand, no term corresponding to g(™)(0)/m.m!in (2.6) occurs. Thus,

/b g(2) logkxdx _ 1 (96) log® z '

xm—l—l m

log T logk Ly k> 0;
m/ m/ me goe L "7 e

The cases in which k& = 0 have been treated above. When k& > 0 and m = 0, we have

b k
g(x)log®a 1 k+1
/E de = k_l_lg(w)log

b 1 b
TR+

g (z) log"*t! zdx k>0, (2.8)

X

and, in all cases specified in the two preceding equations, all terms in the expansion in terms
of ¢ arising from the lower limit of the final term on the right contain loge as a factor.

We are interested in the case in which b becomes infinite. With this in view, we need a
restriction on g(z) so that the various integrals continue to exist and other terms involving
b have proper limits. A simple consequence of g(z) being an allowable function of class
ctm+1o, o0) is that ¢'(z) is one of class cto, 00). In view of this, we may write down
our principal theorem.

Theorem 2.7 When g(z) is an allowable function of class ctm+1o, 00), we have

00 (m) 1 00 !
jé 9(@) . _ 9 (0)+_j£g(l‘)dx7 m >0,
o amtl m.m! mJo ™

= —/ g'(z)log xdz, m =0, (2.9)
0




and, when k> 1,

cog(x) log* x B z)logh 1z log z
%Owdw = m% $m+1 7 2 dx -I—m% $7 m7>0

= “ixil, ¢ (x)log"*! adz, m = 0. (2.10)

The importance of this theorem is twofold. First, it pinpoints an unexpected term g(m)(O)/m.m!7
which occurs in the first relation in this theorem. Second, it justifies in many cases a process
of integration by parts applied directly to Hadamard finite-part integrals.

Theorem 2.8 When g(x) is an allowable function in C+D[0, c0), m >0,
(@) L g P(m+1) =) oy
][6 sl dx = _m/o g () logzdz + - g\ (0), (2.11)

where ¥ (z) = T7(2)/T'(2).

Proof. This is a simple consequence of Theorem 2.7. Let us apply the first member of
(2.9) iteratively m times. We find

]4 g(x)dx_&{i_F 1 + 1 _|__|_1}_|_i7£ wdx
0 0

gmtl m! m m—-1 m-2 1 m! z

Simplifying this and applying the second member of (2.9) gives (2.11) above directly. We
have used the relation

Z_ Ym+1) - o)

- !
]1] m!

This is a standard property of 1(z), the logarithmic derivative of the gamma function, and
is given, for example, in Abramowitz and Stegun(1965) on page 258.
O

3 The Mellin Transform

The conventional definition is as follows.

Definition 3.1 Given a function f(x), its Mellin transform F(p) is defined as

F(p) = / f(@)a" Ve (3.1)
0
for all values of p for which this integral exists.

It is well known that F'(p) is an analytic function. Equally well known is the inversion
formula

e 32

271 Je—ico



where the contour of integration may be taken to be along the line Re p = ¢, where ¢ is any
value of p for which the integral on the right in (3.1) exists.
We now treat

G(p) = /OOO Pty (x)de, p >0, (3.3)

the Mellin transform of an allowable function g(z). This integral representation G(p) is valid
when p > 0 where the integral converges. When p < 0, this integral diverges and defines
nothing. However, G(p) is an analytic function of p and can be continued into Re p < 0.
To investigate this, we proceed as follows. Setting p to some positive number, we integrate

by parts to obtain
P oo oo gl P
Gip) = 9() _/ g'(@e
b o 0 P

Since p > 0 and 2P¢(z) vanishes at oo, the first term on the right disappears. Iterating this
procedure n times gives

(- o
Glp) = / gt ()Pt 3.4
e etk O o
The right-hand side is an analytic function of p in all Re p > —n — 1 except at isolated
poles p =0, —1,...— n. Since this analytic function coincides with G/(p) when Re p > 0, it
represents its continuation into Re p € (—n —1,0]. It is trivial to note from (3.4) that G'(p)
has a simple pole at p = —n, with residue

—1 e (n)
Res(G(p)@p = —n) = ! gt (z)de = g (0)

nt Jo n!

(3.5)

Theorem 3.2 Let g(z) be an allowable function in C(*)[0,00) and G(p) be its Mellin
transform. Then G(p) has an analytic continuation for all p, except for simple poles at
p=0,-1,-2,...

To obtain the early terms in the Laurent expansion, we seek an expansion of G(—n +¢)

in powers of €. Direct substitution of p = —n + ¢ in (3.4) gives
—F(l — 6) oo ( _|_1)
- = n “dzx. .
G(—n+¢) F(n—l—l—e)e/o g (z)a"dx (3.6)
We may use
1 2
xﬁzeﬁlogggzl—l—elogx—l—%—l—... (3.7)
and an expansion of the form
TA-9 a0y o, o0)2
m—co —I_Cl €+02 € -I— (38)

to establish formulas for the individual terms of the Laurent expansion in terms of the
()

coefficients C';"". Recurrence relations for these coefficients are given later in (3.20) and
(3.21). It is trivial to verify that

j >0, (3.9)



and

=1 = )1}, Vel (3.10)

Carrying out this process, we find

Gl=n+e) =" e+l + bt ., (3.11)
where

o) = g™ (0)/n!
k+1 C(”) oo )
b;ﬂn) =-> %/g gt (2) log! & du, k> 0. (3.12)
=0 '
The theory given above may be used to provide critical information about the poles and
Laurent expansions of the Mellin transform F(p) of the function f(z) = 2“¢(z). Clearly,
when f and ¢ are related in this way, their Mellin transforms satisfy

F(p— o) =G(p).
In view of this, we find the somewhat trite corollary.

Corollary 3.3 Let g(x) be an allowable function in C*)[0,00). When f(z) = x%g(z), its
Mellin transform F(p) has poles at p = —a —n (n = 0,1,2,...). The Laurent expansion
F(—a —n+¢) coincides precisely with the right-hand side of (3.11) above.

This result is used in the later sections of this paper and extensively in forthcoming
work on multidimensional quadrature.
Setting & = 0 in (3.12), we find that
n I
bé ) — ——/ g(m+1)(ac) log xdx +
0

m!

This coincides with the Hadamard finite-part integral given in (2.11). We shall now prove

that all coefficients b;n) have equally simple integral representations.

Theorem 3.4 Under the hypotheses of Theorem 3.2, the Laurent expansion coefficients
b;ﬂn) of (3.11) are given by

w1 [eg)logts

Throughout the proof, which is manipulative, we shall use the abbreviation

Hi = % ]éoog (n_]H;(f) 8 7 s (3.14)
In view of expression (3.12), in order to establish (3.13), we must show
k+1
Hoprp=— . C8)_Hoj. (3.15)
=0

As a preliminary, we establish two lemmas.



Lemma 3.5

Ho " (i - 1)!
Hop1k = _% + Z ( o ) Hiy1 -1 (3.16)
) =1 '

Proof. This is based on the two members of (2.10) above. When we apply each of these
relations to the function g("~")(z), m being the parameter in (2.10), we may express the
result in the form

1 1

Hypp10=—Hpp1 00+ —Hpp, m,{ >0, (3.17)
m m

Hyy = —Hopp1, 0> 0. (3.18)

Let us multiply each member of (3.17) by m!/n! and sum the resulting equation over
index m € [1,n]. We find immediately

n

(3.19)

The summation on the left coincides, term by term, with the final summation on the right.
Removing these terms and using (3.18) reduces (3.19) to (3.16), establishing Lemma 3.5.
O

The second lemma we need is a relation between the coefficients C’éi) defined in (3.8).

Lemma 3.6 .

S (i - D = el (3.20)

=1

Proof. We first establish a recursion relation (3.21). This may be used to calculate numer-
(n)

ical values of C'j” recursively starting with the values of C](I) and C’((Jn) given in (3.9) and
(3.10). Using the identity ['(m +1 —¢) = (m — €)I'(m — ¢), we find immediately that

ml'(1 —¢) _ el'(1—¢) _I_F(l—e)
[m+1—¢ T(m+1—¢ T(m—¢)

Applying expansion (3.8) to each quotient of gamma functions, we find

o0

mZC GZC](T_Hl)ej_I +ZC](m_1)ej.

mC = et e (3.21)



To establish the lemma, we multiply each element in (3.21) by (m —1)! and sum over index
mé&[l,n]. Then

n

S mtci™ = 3" (m - 110 + Zm'O
m=1

m=1
The first n — 1 terms in the first summation coincide with the final n — 1 terms in the third
summation. Removing the common terms leaves (3.20) as written. O

We now proceed to the proof of Theorem 3.4, which is by induction.

Proof. (of Theorem 3.4). We wish to establish that
_—Zcﬁ ]HHO,] i=0,1,..., (3.22)

with x = k. In Theorem 2.8, we established this for all :>0 with x = 0. Thus, we may use
that as a basis for induction on &, assume that (3.22) is valid for x € [0,k — 1] and derive
the same result for x = k. To this end, we invoke Lemma 3.5 and substitute for H;;_;

using (3.22). We find

it " (i - 1)!
Hypr o+ =t = s =Dty

k
= - Z Cl(c )]-I—IHOJ

This final equality results from Lemma 3.6 with £ = &k — j. Since C’(()n) = 1/n!, the second
term on the left may be treated as the (k + 1)th element of the sum on the right. This
establishes (3.15), which is an abbreviated statement of Theorem 3.4. O

4 Quadrature Error Expansions for the Semifinite Interval
[0,0)

Our ultimate purpose is to obtain expansions such as (1.2) for the discretization error of an
offset trapezoidal rule over a finite interval [0,1]. The major part of the derivation appears
in this section, where corresponding expansions for the semifinite interval are established. A
straightforward subtraction procedure to obtain expansions for the finite interval is given in
the next section. Following Verlinden (1993), we denote an offset trapezoidal rule operator
for the semifinite interval by

1 o0

-2 (ﬁuﬁ) . (4.1)

10



It follows immediately from the Mellin inversion formula (3.2) that

() < [ ()

Substituting this into (4.1) and inverting the order of summation and integration, we find

1 c+i00 _
Suf(8) = 35 [ F)Co. g dp. (4.3
Here we have used a standard definition of the Riemann zeta function, namely
Cpoa)= D@+ k)7, ae(0,1] (4.4)
k=0

Since F(p) is the Mellin transform (3.1) of f(z), it follows that ¢ in (4.2) may take any
value of p for which the integral on the right of (3.1) exists. We shall be applying this result
only in cases where f(z) is an allowable function, or closely related to one, and no problem
in finding a suitable value of ¢ is encountered.

Formula (4.3) is of wide validity, being meaningful whenever f(z) is such that its Mellin
transform (3.1) exists for any value of p. We now specialize to functions f(z) of the form

f(a) = a%g(x), (4.5)

where g(z) is an allowable function. Note that we need not at the moment restrict o in any
way. Recalling that F'(p) = G(a+p), one may readily show that the expression on the right
in (4.3) is O(uc™1) as p — oo. Consequently, we may displace the contour in (4.3) to the
left from Re p = ¢ to Re p = ¢ so long as we include the sum of residues of the integrand
at poles in the strip Re p € [¢],¢1). This process introduces a finite set of residue terms,
but replacing ¢ by ¢ in the integral reduces its order from O(u~") to O(u'~").

These poles occur at p = 1, where the zeta function has a simple pole and at p= —a—n
n =0,1,2,..; at each of these points I'(p) has a simple pole. When « is not a negative
integer, all these poles are distinct. When « is a negative integer, the pole of F(p) with
n = —1 — « coincides with the pole of the zeta function resulting in a pole of order 2 of the
integrand function at this point.

We deal first with the case in which the poles are distinct. It is well known that

Res(C(p, z)ap=1) =1, (4.6)
and in view of (3.11) we have
Res(F(p)ap = —n — a) = ¢™(0)/n!. (4.7)

This gives the following theorem.

11



Theorem 4.1 Let f(z) = 2%g(z); let g(x) be allowable in CNTD[0, 00), and let o not be
a negative integer. Then,

c+i00
S0 = 5= [ PO Oy

271 Je—ioo

N n
_ )y Z_: 9! ;!(0) ((=n—a,f) (4.8)

Iun—l—oz—l—l

¢! +i00
+i/ F(p)C(p, B)p" dp,

27t Jor—ico
where N is a nonnegative integer, ¢ > o — 1, ¢ € (=N —a —2,-N —a — 1), and F(p) is
the (analytic continuation of the) Mellin transform of f(x) (in the p-plane).

Our immediate task is to identify F(1). When a > —1, the integral representation in
Definition 3.1 exists, giving

F(1) = /OOO fla)da.

When o < —1, F(1) is the analytic continuation of F(p), which exists for higher values of
p. Since « is not a negative integer, we may invoke Theorem 2.6 to give

F(1) = jéoof(x)dx. (4.9)

There remains the case in which « is a negative integer. The expansion (4.8) is based on
the assumption that all the poles of the integrand function in (4.3) are distinct and simple
and their residues given by (4.6) and (4.7). When « is a negative integer, the poles for
n # —1 — a are unchanged in character. However, there is a pole of order 2 at p = 1. We
need to make a technical adjustment to (4.8) replacing F'(1) and the term in the sum with
n = —1 — « by the residue of F(p)((p,z)u?~! at p = 1. The calculation of this residue is
straightforward but tedious. Briefly, we require the coefficient of ¢~! in the expansion of
F(1+¢)¢(1+¢ 2)p". Using the result of Corollary 3.3 with n = 1 and setting m = —1 — «,
a nonnegative integer, we find

1 g™
F(l4e) = zg

m!

0 [oe]
© %Jf(ac)dac +0(0).
In view of the standard expansions
1
(4 ea) = 1~ (@) +0(0),

pt = €180 =14 elog p + O(€?),

we find immediately that the required coefficient is

Fitaar - L0 5y 800,

m! !

Replacing the two terms mentioned above leads to a variant theorem.

12



Theorem 4.2 When « is a negative integer, Theorem 4.1 is valid as written except that,
in the expansion (4.8) the term with n = m = —a — 1 is omitted from the sum and replaced

by
(m)
2O tog
m'

as before, F'(1) remains the finite-part integral (4.9).

5 Quadrature Error Expansions for the Finite Interval [0, 1]

The results of the preceding section are expansions for the infinite sum
1 i (] + ﬁ)
l,[/ :

where f(z) = 2%¢(z) and g(x) is an allowable function. In this section we exploit those ex-
pansions to obtain corresponding results pertaining to a finite interval [0,1] and a quadrature

rule - v
- 2i(50):

This is a discretization of the finite integral [ f(z)dz. We shall treat three cases: f(z) has
no singularities, has a singularity at one end of the interval, and has singularities at both
ends.

Definition 5.1 A neutralizer function v(z; K15 ke) with Ky > K1 is a function satisfying

$§I4317
$ZI4327

1
0
(96) € O (—00,00).

Example:

1 1 1
1/(96):5{1—|—tanh<,{2_t—t_m)}7 t € (K1, K2).

A familiar result is the following lemma.

Lemma 5.2 Let f(z) € CP[0,1]. There exists a CP)[0,00) continuation of f(x) that is
allowable. This is

f(z) = { ( P, f(J;!(l)(x _ 1)1) v(x; ki k), 1<z,

where v(z) is any neutralizer function with 1 < k1 < Kz < oo.

13



In the sequel, in situations in which f(z) is defined only in [0,1], we shall assume a
continuation of the above form without any further comment.

To obtain the classical Euler-Maclaurin expansion for [0,1] for f(z) € C®)]0,1], we
define its continuation as just described with k1 > 1. Then we may set

fle) = fle+1),
and clearly ) .
Suf(B) =5, f(B) = 5. f(B).
We apply the result of Theorem 4.1 to both terms. Since o = 0, we readily find

Suf(B) = F()-F(1)
N
_|_

— M

1
5 SEmB) gy - gy

n=0

e [0~ P e 5.)

270 J o' —ico

Here we have denoted the Mellin transform of f(z) by F(p). Since f(z) is regular and
allowable, it follows that

1

(F@) = fa+ D)= [ fla)ar

0

o0

F(1) - F(1) = /

0
and the zeta function in the summation may be re-expressed in terms of Bernoulli polyno-
mials, using (1.3) above.

An expansion for the error functional when there is an integrand singularity at one
end of the interval is obtained by using the same procedure. Let f(z) = 2%¢g(x), where
g(z) € CWo,1].

Let o # negative integer and > 0. Then, applying Theorem 4.1, we find

Suf(B) = Suf(B) — Suf(B)

= F(1)-F(1)
N oC(=n - a, () (0 —n, (n) (1
i Z:%J C( M”"’O“H ﬁ) : n'( ) T Z_% C(Iun+1 ) / n!( )
1 ' +ico R
+%/c,_m (F(p) = F(p))C(p, )" dp. (5.2)

Since « # negative integer, the first term here is
()= F(1) = %f(ac)dac _ / fl2)de
0 1
1
= %f(w)dx
0

When « > —1, this is Navot’s result. When o < —1 and is not an integer, this is Ninham’s
result. This derivation is the same for these two cases.
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When « is a negative integer, say, —m — 1, where m is a nonnegative integer, the
expansion given above has to be adjusted in accordance with Theorem 4.2. Doing this leads
to the following replacement for (5.2). Here, f(z) = 2%g(z) = g(z)/a™T!.

1 (m) (m)
f f()dz — g—(%(ﬁ) + gimfo) log 1
N n
N Z n—l—m—l—l 3) g (0 )+ZC(—n7ﬁ)f( ‘(1)

n! b S n!
n;ém
1 c' +100 - 1
+%/ @) = F@)C(p, x)p" dp. (5.3)

We have now treated all values of @. When « is a negative integer, expansion (5.3) (with
the log v term) is valid. Otherwise, the expansion (5.2) is valid. The regular expansion
(5.1) coincides with (5.2) when « is set to zero.

One may obtain variants of these results relating to an integrand function that has a
singularity at both ends of the finite interval. Let

fla) =2 (1—2)"g(),
where ¢(z) € C®)[0,1]. To handle this, we re-express f(z) as follows:

f@) = F@les )+ f@ 0 - v 5)

= Jo(@)+ fi(z) = fo(z) + f2(1 — ).

Then, . . ) ) .
Suf(B) = Sufo(B)+ Sufi(B) =S fo(B) + Sufa(1 = 0).

Geometrically, we have replaced the original f(z) by two functions whose support is localized
to [0, k2] and to [k1, 1], respectively (k; = ¢/3). The second of these has been reflected about
@ = 1. This has left the two functions fy(z) and fy(z), both of which have a singularity
at @ = 0 but are allowable in C[0,00). It remains only to apply Theorem 4.1 to fo(z) and

f2(x) separately. Setting

go(z) = (L—x)"g(z),  qi(e) =2"g(2),

we obtain
Suf(B) = Sufo(B)+S.fo(l - B)
= ( )+ Fy(1)
C n—a,f (n)O NC——,I—ﬁ (n)l_ln
-I-Z P )gon!( )_I_Z::l ( nun+:+1 ) 91 (72'( )
1 c'+ico -

+%/C,_Z.oo (Fo(p) + Fa2(p))C(p, B)p"™ dp. (5.4)

Here,

1

Fo(1) + (1) = 2 f(a)da.

0
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In the case that one or both of « or 4 are negative integers, say —m — 1 or —m — 1,
respectively, there is an adjustment of the same type as was made to obtain (5.3) from
(5.2). In the extreme case that both are negative integers, the sums over n are adjusted by
omitting the terms for which n» = m and n = m, respectively, and by including two sets of
extra terms each set being of the type specified in Theorem 4.2.

6 Concluding Remarks

In this paper we have presented a unified approach for deriving the one-dimensional Euler-
Maclaurin expansions for quadrature error functionals defined on a finite interval when the
integrand function has an algebraic singularity, of any order, at one or both both endpoints.
We have been able to include, in a general framework, the case of nonintegrable singularities,
that is, integrals defined as Hadamard finite-parts.

Our approach is based on properties of the Mellin transform; in particular, using integra-
tion by parts, we have continued an investigation initiated by Verlinden into the sequence
of poles in the negative real axis. Critical to our theory is the nature of the Laurent ex-
pansion at each pole. We have shown that each individual term in this expansion has a
simple integral representation in terms of a Hadamard finite-part integral. This is an exten-
sion of the theory recently developed by Verlinden to higher-order terms and nonintegrable
singularities.

As mentioned in the introduction, a refreshing feature of this theory is that it treats
all possible cases of singularities in a fundamentally uniform way. The different expansions
arise simply as a result of a technical difference in the formula required to calculate the
residues at the poles of the Mellin transform.
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